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1. 

Recently, Bolwell [1] introduced a variant of the partial differential equation for
a flexible string in which non-linearity is included by simply replacing the constant
tension in the linear equation by its Hooke’s law expression to take account of
finite stretching. When fourth and higher powers were neglected, this gave a
non-linear equation for y(x, t), the transverse deflection in a plane:

12y/1t2 = [c2
1 + 1

2c
2
2 (1y/1x)2] 12y/1x2. (1)

Here (cf. [1]), the parameter c1 = (T/rA)1/2, which would be the speed of transverse
waves along the string in the linear regime (linear transverse wave equation for
string tension T ), and the parameter c2 = (Y/r)1/2, which would be the speed of
longitudinal waves along the string in the linear regime (linear longitudinal wave
equation). Neither parameter has this significance for the present non-linear wave
equation (1). In the above, T is the string pre-stressed tension, r is its volume
density, A is its cross-sectional area and Y is the Young’s modulus. The main
interest in reference [1] was in the plucked string and an impact problem.

The consequent increase in tension due to stretching in [1] is in direct contrast
to the standard linear D’Alembert string equation, where the tension is assumed
unchanged by the small deflections:

12y/1t2 = c2
1 12y/1x2. (2)

This involves only one speed parameter, in contrast to the two independent
speed-like parameters in equation (1).

For model (1), it is evident both on physical grounds, due to tension increasing
with amplitude, and mathematical grounds, due to the + sign on the right side,
that the fundamental frequency increases as amplitude of vibration increases. By
contrast, for the linear D’Alembert string (2), the fundamental frequency remains
independent of the (small) amplitude.

2.     

The case of a string, model (1), for which the pre-stressed tension T is zero, i.e.,
c1 =0, was discussed to a certain extent in reference [1]. This case is of particular
interest vis-à-vis the linear D’Alembert wave equation (2), because waves are not
possible for this latter case when the tension remains zero. For model (1) of
reference [1] on the other hand, on the physical grounds of the increase in tension

0022–460X/99/110169+06 $30.00/0 7 1999 Academic Press



   170

to a positive value when the transverse displacement is non-zero, and due to the
mathematical form of equation (1) in general with its two independent speeds so
that T=0, i.e., c1 =0 can be set, the vibrating pretensionless string is possible.
Then from (1), such a modest string satisfies the partial differential equation

12y/1t2 = s(1y/1x)2 12y/1x2, (3)

where

s= 1
2c

2
2 ; c2 = (Y/r)1/2. (4)

The fundamental frequency of this string (3) will now be studied using various
assumed forms together with the harmonic balance method [2, chap. 4] and exact
solutions. The boundary conditions are those of fixed ends at x=0 and x=L,
viz. y(x=0, t)=0= y(x=L, t).

2.1. Assumed linear spatial mode

The assumption is first made in equation (3) that for the fundamental mode

y(x, t)= sin (px/L)T(t). (5)

Then a Galerkin-type procedure gives the ordinary nonlinear temporal differential
equation satisfied by T(t):

T� =−1
4(p

4/L4)sT 3. (6)

2.1.1. Exact solution of the temporal equation

Equation (6) is just the standard cubic oscillator equation with given coefficient,
whose exact solution for frequency is known [3, p. 4], being expressible in terms
of Gamma functions. For scaled frequency

V0L2v/c2, (7)

it leads here to the value

VT
ex =2·956292YM , (8)

where YM is the maximum value of y, here by equation (5) equal to the amplitude
TM of equation (6).

2.1.2. Harmonic balance solution of the temporal equation

For the familiar cubic oscillator equation (6), first order harmonic balance ([2,
sect. 4.3.1]) using

T(t)= a cos (vt) (9)

gives the approximate expression for the radian frequency squared:

v2 1 3
16

p4s

L4 a2. (10)

Thus, for the overall assumed form

y= a sin (px/L) cos (vt), (11)
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the first order harmonic balance approximate radian frequency for equation (3)
is

v1 = (1
4 z3/2 p2)(c2/L2)TM (12)

where TM is the maximum amplitude, i.e., YM =TM = a here. Hence

V1 =3·0219 YM . (13)

Since the approximation (13) is already within about 2% of the exact value (8)
for the temporal equation (6), there is little need to proceed to the even more
accurate second-order harmonic balance solution (cf. [2, sect. 4.5.1]) here.

2.2. Assumed harmonic time dependence

The assumption in equation (3), that

y(x, t)=U(x) cos vt, (14)

together with first-order harmonic balance, leads to the ordinary non-linear spatial
differential equation for U(x) (where a prime denotes differentiation with respect
to x):

U0(U')2 =−[4/(3s)]v2U, (15)

to be solved for the fixed string boundary conditions U(0)=0=U(L).

2.2.1. Exact solution of the spatial equation

The solution to the spatial equation (15) may be found exactly. A first integral
is

(U')4 = [8v2/(3s)][U 2
M −U 2], (16)

where UM =U(x=L/2)=YM is the maximum value of U in equation (15) and
hence of y in equation (14). A further integration yields

v=z3(c2/L2)b2UM (17)

where

b=g
1

0

dV
(1−V2)1/4 =g

p/2

0

zcos u du= 1
2B(1

2,
3
4)=2z2pzp/[G(1

4)]
2

=1·1981402 (18)

where B is the Beta function [4, p. 258] and G is the Gamma function [4, pp.
255–256]. Thus

VS
ex =2·486428 YM . (19)

The mode shape U(x) itself is given implicitly by

4z8/(3s) zv/UMx= 1
2B(U/UM)2(1

2,
3
4) (20)
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where the function on the right side is the incomplete Beta function [4, p. 263].
It is worthwhile investigating the solution U(x) to equation (15) a little more

closely. At x=0, U=0, so by equation (16)

U'(x=0)= 4z8/(3s) zv zUM . (21)

Since this is non-zero, by equation (15) U0(x=0)=0.
By using equations (17) and (21), the following relations involving

U'0 0U'(x=0) may be obtained:

vL/c2 = (z3/2)bU'0; (22a)

UM /L=[1/(2b)]U'0. (22b)

At x=L/2, U=UM , and U'(x=L/2)=0, so, by equation (15), =U0(x=L/
2)==a. This last result may be made more precise by differentiating equation (16)
with respect to x to get eventually

U0(x)=−1
2 z8/(3s)vU/(U 2

M −U 2)1/2. (23)

This shows analytically how, as U:UM −0, U0:−a proportionately to
−1/(UM −U)1/2.

2.2.2. Approximate solution of the spatial equation

The Ansatz for the fundamental mode of equation (15)

U(x)= a sin (px/L) (24)

together with the first-order spatial equivalent of harmonic balance yields, in
agreement with equations (11)–(13) above,

V1 =3·0219 YM , (25)

where YM =UM = a here.
This first-order approach (24) to solving the spatial equation (15) gives the

approximate value (25) which is not in very good agreement with the exact value
(19) for the spatial equation, being over 20% too high. In this case it is worthwhile
to find a second approximation to the spatial equation (15) by using the second
order equivalent of harmonic balance, i.e., a simplified Galerkin-type procedure.
Thus the function used to describe U(x) for the fundamental mode now also
contains the third spatial harmonic (being symmetrical about its mid-point), and
one sets

U(x)= a sin (px/L)+ b sin (3px/L). (26)

Now

U(x=L/2)=UM = a+ =b=, (27)

where UM is still the maximum, provided that bQ 0; this must be checked a
posteriori. It will also subsequently be checked that the obtained value of b/a is
small and leads to an acceptable expression for a fundamental mode shape.
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Retention of first and third spatial harmonics in equation (15) then gives

(L4/p4)v2 = (3s/16)a2[1+3a+18a2], (28)

where

a= b/a (29)

is the small solution of the algebraic equation

1+17a−3a2 +63a3 =0. (30)

Thus

a1−1/171−0·059. (31)

[Solution of the corresponding quadratic or cubic equation (30) gives a1−0·058
but the above fraction value (31) is sufficiently accurate for the present purposes.]
This a is indeed negative, and so the coefficient b in equation (26) is negative and
equation (27) holds. The coefficient (31) is sufficiently small so that U'(x)q 0,
0E xQL/2; so equation (26) can reasonably represent a fundamental mode
shape.

The term in the square brackets in equation (28) for v2 then has a value of
162/172; and from (27) a=(17/18)UM . Thus v is decreased by a factor of
(16/17)(17/18)=8/9=0·0889, and

VS
2 =2·686 YM . (32)

This reduces the harmonic balance error in (25) compared with (19) to about 8%
which is more acceptable.

It is noted that the spatial differential equation (15) has a rather unusual form,
not at all like a Helmholtz equation involving U0 and U. Thus it is not surprising
that equation (26) does not lead to a highly accurate value for the frequency. The
fact that a reasonable value is nevertheless obtained is perhaps a tribute to the
harmonic balance type approach.

3. 

For the pretensionless string equation (3) under consideration, the approximate
fundamental frequency solutions (13) and (32) to the temporal and spatial
ordinary differential equations (6) and (15) respectively have been found. The
former is very close to its exact value, and the latter is in reasonable agreement
with its exact value. It is fortunate that the respective exact values (8) and (19)
are both analytically available. They actually differ somewhat from each other. A
closer reconciliation would require a more comprehensive consideration of
non-linear normal modes of the original non-linear partial differential equation
(3); this will not be pursued here.

In conclusion, it is noted that all the used solution approaches lead to VAYM ,
and so direct comparisons are achievable by consideration of single numerical
coefficients.
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